
NAG C Library Function Document

nag_dormhr (f08ngc)

1 Purpose

nag_dormhr (f08ngc) multiplies an arbitrary real matrix C by the real orthogonal matrix Q which was
determined by nag_dgehrd (f08nec) when reducing a real general matrix to Hessenberg form.

2 Specification

void nag_dormhr (Nag_OrderType order, Nag_SideType side, Nag_TransType trans,
Integer m, Integer n, Integer ilo, Integer ihi, const double a[], Integer pda,
const double tau[], double c[], Integer pdc, NagError *fail)

3 Description

nag_dormhr (f08ngc) is intended to be used following a call to nag_dgehrd (f08nec), which reduces a real

general matrix A to upper Hessenberg form H by an orthogonal similarity transformation: A ¼ QHQT .
nag_dgehrd (f08nec) represents the matrix Q as a product of ihi � ilo elementary reflectors. Here ilo and
ihi are values determined by nag_dgebal (f08nhc) when balancing the matrix; if the matrix has not been
balanced, ilo ¼ 1 and ihi ¼ n.

This function may be used to form one of the matrix products

QC; QTC; CQ or CQT ;

overwriting the result on C (which may be any real rectangular matrix).

A common application of this function is to transform a matrix V of eigenvectors of H to the matrix QV
of eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: side – Nag_SideType Input

On entry: indicates how Q or QT is to be applied to C as follows:

if side ¼ Nag LeftSide, Q or QT is applied to C from the left;

if side ¼ Nag RightSide, Q or QT is applied to C from the right.

Constraint: side ¼ Nag LeftSide or Nag RightSide.

3: trans – Nag_TransType Input

On entry: indicates whether Q or QT is to be applied to C as follows:

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ngc

[NP3645/7] f08ngc.1

if trans ¼ Nag NoTrans, Q is applied to C;

if trans ¼ Nag Trans, QT is applied to C.

Constraint: trans ¼ Nag NoTrans or Nag Trans.

4: m – Integer Input

On entry: m, the number of rows of the matrix C; m is also the order of Q if side ¼ Nag LeftSide.

Constraint: m � 0.

5: n – Integer Input

On entry: n, the number of columns of the matrix C; n is also the order of Q if
side ¼ Nag RightSide.

Constraint: n � 0.

6: ilo – Integer Input

7: ihi – Integer Input

On entry: these must be the same parameters ilo and ihi, respectively, as supplied to nag_dgehrd
(f08nec).

Constraints:

if side ¼ Nag LeftSide and m > 0, 1 � ilo � ihi � m;
if side ¼ Nag LeftSide and m ¼ 0, ilo ¼ 1 and ihi ¼ 0;
if side ¼ Nag RightSide and n > 0, 1 � ilo � ihi � n;
if side ¼ Nag RightSide and n ¼ 0, ilo ¼ 1 and ihi ¼ 0.

8: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least

maxð1; pda�mÞ when side ¼ Nag LeftSide;

maxð1; pda� nÞ when side ¼ Nag RightSide.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: details of the vectors which define the elementary reflectors, as returned by nag_dgehrd
(f08nec).

On exit: used as internal workspace prior to being restored and hence is unchanged.

9: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:

if side ¼ Nag LeftSide, pda � maxð1;mÞ;
if side ¼ Nag RightSide, pda � maxð1;nÞ.

10: tau½dim� – const double Input

Note: the dimension, dim, of the array tau must be at least maxð1;m� 1Þ when
side ¼ Nag LeftSide and at least maxð1;n� 1Þ when side ¼ Nag RightSide.

On entry: further details of the elementary reflectors, as returned by nag_dgehrd (f08nec).

11: c½dim� – double Input/Output

Note: the dimension, dim, of the array c must be at least maxð1; pdc� nÞ when
order ¼ Nag ColMajor and at least maxð1; pdc�mÞ when order ¼ Nag RowMajor.

f08ngc NAG C Library Manual

f08ngc.2 [NP3645/7]

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix C is stored in c½ðj� 1Þ � pdcþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix C is stored in c½ði� 1Þ � pdcþ j� 1�.
On entry: the m by n matrix C.

On exit: c is overwritten by QC or QTC or CQ or CQT as specified by side and trans.

12: pdc – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:

if order ¼ Nag ColMajor, pdc � maxð1;mÞ;
if order ¼ Nag RowMajor, pdc � maxð1; nÞ.

13: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

On entry, pdc ¼ hvaluei.
Constraint: pdc > 0.

NE_INT_2

On entry, pdc ¼ hvaluei, m ¼ hvaluei.
Constraint: pdc � maxð1;mÞ.
On entry, pdc ¼ hvaluei, n ¼ hvaluei.
Constraint: pdc � maxð1; nÞ.

NE_ENUM_INT_3

On entry, side ¼ hvaluei, m ¼ hvaluei, n ¼ hvaluei, pda ¼ hvaluei.
Constraint: if side ¼ Nag LeftSide, pda � maxð1;mÞ;
if side ¼ Nag RightSide, pda � maxð1;nÞ.

NE_ENUM_INT_4

On entry, side ¼ hvaluei, m ¼ hvaluei, n ¼ hvaluei, ilo ¼ hvaluei, ihi ¼ hvaluei.
Constraint: if side ¼ Nag LeftSide and m > 0, 1 � ilo � ihi � m;
if side ¼ Nag LeftSide and m ¼ 0, ilo ¼ 1 and ihi ¼ 0;
if side ¼ Nag RightSide and n > 0, 1 � ilo � ihi � n;
if side ¼ Nag RightSide and n ¼ 0, ilo ¼ 1 and ihi ¼ 0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ngc

[NP3645/7] f08ngc.3

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

kEk2 ¼ Oð�ÞkCk2;

where � is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately 2nq2 if side ¼ Nag LeftSide and 2mq2 if
side ¼ Nag RightSide, where q ¼ ihi � ilo.

The complex analogue of this function is nag_zunmhr (f08nuc).

9 Example

To compute all the eigenvalues of the matrix A, where

A ¼

0:35 0:45 �0:14 �0:17
0:09 0:07 �0:54 0:35

�0:44 �0:33 �0:03 0:17
0:25 �0:32 �0:13 0:11

1
CCA

0
BB@ ;

and those eigenvectors which correspond to eigenvalues � such that Reð�Þ < 0: Here A is general and
must first be reduced to upper Hessenberg form H by nag_dgehrd (f08nec). The program then calls
nag_dhseqr (f08pec) to compute the eigenvalues, and nag_dhsein (f08pkc) to compute the required
eigenvectors of H by inverse iteration. Finally nag_dormhr (f08ngc) is called to transform the
eigenvectors of H back to eigenvectors of the original matrix A.

9.1 Program Text

/* nag_dormhr (f08ngc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, m, n, pda, pdh, pdvl, pdvr, pdz;
Integer tau_len, ifaill_len, ifailr_len, select_len, w_len;
Integer exit_status=0;
double thresh;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *h=0, *vl=0, *vr=0, *z=0, *wi=0, *wr=0, *tau=0;
Integer *ifaill=0, *ifailr=0;
Boolean *select=0;

#ifdef NAG_COLUMN_MAJOR

f08ngc NAG C Library Manual

f08ngc.4 [NP3645/7]

#define A(I,J) a[(J-1)*pda + I - 1]
#define H(I,J) h[(J-1)*pdh + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define H(I,J) h[(I-1)*pdh + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08ngc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pda = n;
pdh = n;
pdvl = n;
pdvr = n;
pdz = 1;

#else
pda = n;
pdh = n;
pdvl = n;
pdvr = n;
pdz = 1;

#endif
tau_len = n;
w_len = n;
ifaill_len = n;
ifailr_len = n;
select_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||

!(h = NAG_ALLOC(n * n, double)) ||
!(vl = NAG_ALLOC(n * n, double)) ||
!(vr = NAG_ALLOC(n * n, double)) ||
!(z = NAG_ALLOC(1 * 1, double)) ||
!(wi = NAG_ALLOC(w_len, double)) ||
!(wr = NAG_ALLOC(w_len, double)) ||
!(ifaill = NAG_ALLOC(ifaill_len, Integer)) ||
!(ifailr = NAG_ALLOC(ifaill_len, Integer)) ||
!(select = NAG_ALLOC(select_len, Boolean)) ||
!(tau = NAG_ALLOC(tau_len, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read A from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");
Vscanf("%lf%*[^\n] ", &thresh);

/* Reduce A to upper Hessenberg form */
f08nec(order, n, 1, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08nec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Copy A to H */
for (i = 1; i <= n; ++i)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ngc

[NP3645/7] f08ngc.5

{
for (j = 1; j <= n; ++j)

H(i,j) = A(i,j);
}

/* Calculate the eigenvalues of H (same as A) */
f08pec(order, Nag_EigVals, Nag_NotZ, n, 1, n, h, pdh, wr,

wi, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08pec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print eigenvalues */
Vprintf(" Eigenvalues\n");
for (i = 0; i < n; ++i)

Vprintf(" (%8.4f,%8.4f)\n", wr[i], wi[i]);
Vprintf("\n");
for (i = 0; i < n; ++i)

select[i] = (wr[i] < thresh);
/* Calculate the eigenvectors of H (as specified by SELECT), */
/* storing the result in VR */
f08pkc(order, Nag_RightSide, Nag_HSEQRSource, Nag_NoVec, select,

n, a, pda, wr, wi, vl, pdvl, vr, pdvr, n, &m, ifaill,
ifailr, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from f08pkc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Calculate the eigenvectors of A = Q * VR */
f08ngc(order, Nag_LeftSide, Nag_NoTrans, n, m, 1, n, a, pda,

tau, vr, pdvr, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ngc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print Eigenvectors */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m, vr, pdvr,

"Contents of array VR", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
if (h) NAG_FREE(h);
if (vl) NAG_FREE(vl);
if (vr) NAG_FREE(vr);
if (z) NAG_FREE(z);
if (wi) NAG_FREE(wi);
if (wr) NAG_FREE(wr);
if (ifaill) NAG_FREE(ifaill);
if (ifailr) NAG_FREE(ifailr);
if (select) NAG_FREE(select);
if (tau) NAG_FREE(tau);
return exit_status;

}

f08ngc NAG C Library Manual

f08ngc.6 [NP3645/7]

9.2 Program Data

f08ngc Example Program Data
4 :Value of N
0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35

-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A
0.0 :Value of THRESH

9.3 Program Results

f08ngc Example Program Results

Eigenvalues
(0.7995, 0.0000)
(-0.0994, 0.4008)
(-0.0994, -0.4008)
(-0.1007, 0.0000)

Contents of array VR
1 2 3

1 0.3881 0.0574 0.1493
2 -0.7107 0.0380 0.3956
3 -0.3891 0.0778 0.7075
4 -0.3996 -0.7270 0.8603

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ngc

[NP3645/7] f08ngc.7 (last)

	f08ngc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	trans
	m
	n
	ilo
	ihi
	a
	pda
	tau
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_3
	NE_ENUM_INT_4
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

