f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ngc

NAG C Library Function Document

nag_dormhr (f08ngc)

1 Purpose

nag_dormhr (f08ngc) multiplies an arbitrary real matrix C' by the real orthogonal matrix) which was
determined by nag_dgehrd (f08nec) when reducing a real general matrix to Hessenberg form.

2 Specification

void nag_dormhr (Nag_OrderType order, Nag_SideType side, Nag_TransType trans,
Integer m, Integer n, Integer ilo, Integer ihi, const double a[], Integer pda,
const double tau[], double c¢[], Integer pdc, NagError *fail)

3 Description

nag_dormhr (f08ngc) is intended to be used following a call to nag_dgehrd (f08nec), which reduces a real

general matrix A to upper Hessenberg form H by an orthogonal similarity transformation: 4 = QHQ".
nag_dgehrd (f08nec) represents the matrix @) as a product of ¢;; — 7;, elementary reflectors. Here ;, and
1y; are values determined by nag dgebal (f08nhc) when balancing the matrix; if the matrix has not been
balanced, 7;, = 1 and i;; = n.

This function may be used to form one of the matrix products
QC, Q'C, €Q or CQ",
overwriting the result on C' (which may be any real rectangular matrix).

A common application of this function is to transform a matrix V' of eigenvectors of H to the matrix QV
of eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: side — Nag_SideType Input
On entry: indicates how Q or Q" is to be applied to C' as follows:
if side = Nag_LeftSide, Q or Q" is applied to C' from the left;
if side = Nag_RightSide, Q or Q" is applied to C' from the right.
Constraint. side = Nag_LeftSide or Nag_RightSide.

3: trans — Nag TransType Input

On entry: indicates whether Q or Q7 is to be applied to C as follows:

[NP3645/7] f08ngc.1

f08ngc NAG C Library Manual

if trans = Nag NoTrans, () is applied to C}
if trans = Nag_Trans, Q is applied to C.

Constraint: trans = Nag NoTrans or Nag_Trans.

4: m — Integer Input
On entry: m, the number of rows of the matrix C; m is also the order of () if side = Nag_LeftSide.

Constraint: m > 0.

5: n — Integer Input

On entry: n, the number of columns of the matrix C; n is also the order of @ if
side = Nag_RightSide.

Constraint: n > 0.

6: ilo — Integer Input
7: ihi — Integer Input
On entry: these must be the same parameters ilo and ihi, respectively, as supplied to nag dgehrd
(f08nec).
Constraints:

if side = Nag_LeftSide and m > 0, 1 <ilo < ihi < m;
if side = Nag_LeftSide and m = 0, ilo = 1 and ihi = 0;
if side = Nag_RightSide and n > 0, 1 <ilo < ihi < n;
if side = Nag_RightSide and n = 0, ilo = 1 and ihi = 0.

8: a[dim] — double Input/Output

Note: the dimension, dim, of the array a must be at least
max (1, pda x m) when side = Nag_LeftSide;
max(1, pda x n) when side = Nag_RightSide.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i,7)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag dgehrd
(f08nec).

On exit: used as internal workspace prior to being restored and hence is unchanged.

9: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if side = Nag_LeftSide, pda > max(1, m);
if side = Nag_RightSide, pda > max(1,n).
10: tau[dim] — const double Input

Note: the dimension, dim, of the array tau must be at least max(l,m— 1) when
side = Nag_LeftSide and at least max(1,n — 1) when side = Nag_RightSide.

On entry: further details of the elementary reflectors, as returned by nag dgehrd (f08nec).

11: c¢[dim] — double Input/Output

Note: the dimension, dim, of the array ¢ must be at least max(l,pde x n) when
order = Nag_ColMajor and at least max(1, pdec x m) when order = Nag_RowMajor.

f08ngc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ngc

12:

6

If order = Nag_ColMajor, the (4, j)th element of the matrix C' is stored in ¢[(j — 1) x pde + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix C' is stored in ¢[(i — 1) x pdc + j — 1].

On entry: the m by n matrix C.
On exit: ¢ is overwritten by QC or Q7C or CQ or CQ" as specified by side and trans.

pdc — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:
if order = Nag_ColMajor, pdc > max(1, m);
if order = Nag_RowMajor, pdc > max(1,n).
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pde = (value).
Constraint: pdc > 0.

NE_INT 2

On entry, pde = (value), m = (value).
Constraint: pde > max(1, m).

On entry, pde = (value), n = (value).
Constraint: pde > max(1,n).

NE_ENUM_INT 3

On entry, side = (value), m = (value), n = (value), pda = (value).
Constraint: if side = Nag_LeftSide, pda > max(1, m);
if side = Nag_RightSide, pda > max(1,n).

NE_ENUM_INT 4

On entry, side = (value), m = (value), n = (value), ilo = (value), ihi = (value).
Constraint: if side = Nag_LeftSide and m > 0, 1 <ilo < ihi < m;

if side = Nag_LeftSide and m = 0, ilo = 1 and ihi = 0;

if side = Nag_RightSide and n > 0, 1 <ilo < ihi < n;

if side = Nag_RightSide and n = 0, ilo = 1 and ihi = 0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

[NP3645/7] f08nge.3

f08ngc NAG C Library Manual

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The computed result differs from the exact result by a matrix £ such that
1E]l, = O(ICll,,

where € is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately 2ng’ if side = Nag_LeftSide and 2mq’ if
side = Nag_RightSide, where q = i;; — 1,

The complex analogue of this function is nag zunmhr (f08nuc).

9 Example

To compute all the eigenvalues of the matrix A, where

0.35 0.45 -0.14 -0.17
0.09 007 -054 035
—-0.44 -0.33 —0.03 0.17 |’
025 -032 -0.13 0.11

A:

and those eigenvectors which correspond to eigenvalues A such that Re(\) < 0. Here A is general and
must first be reduced to upper Hessenberg form H by nag dgehrd (f08nec). The program then calls
nag_dhseqr (f08pec) to compute the eigenvalues, and nag dhsein (f08pkc) to compute the required
eigenvectors of H by inverse iteration. Finally nag dormhr (f08ngc) is called to transform the
eigenvectors of H back to eigenvectors of the original matrix A.

9.1 Program Text

/* nag_dormhr (£08ngc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, m, n, pda, pdh, pdvl, pdvr, pdz;
Integer tau_len, ifaill_len, ifailr_len, select_len, w_len;
Integer exit_status=0;
double thresh;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *h=0, *v1l=0, *vr=0, *z=0, *wi=0, #*wr=0, *tau=0;
Integer *ifaill=0, *ifailr=0;
Boolean #*select=0;

#ifdef NAG_COLUMN_MAJOR

f08ngc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ngc

#define A(I,J) al(J-1)*pda
#define H(I,J) h[(J-1)*pdh
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda

#define H(I,J) h[(I-1)*pdh
order = Nag_RowMajor;

#endif

+ 4+
HH
1
e

+ +
g
1
R

INIT_FAIL(fail);
Vprintf ("f08ngc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*x["\n] ");
Vscanf ("$1d%s*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR
pda = n;
pdh = n;
pdvl = n;
pdvr = n;
pdz = 1;
#else
pda = n;
pdh = n;
pdvl = n;
pdvr = n;
pdz = 1;
#endif
tau_len = n;
w_len = n;
ifaill _len = n;
ifailr_len = n;
select_len = n;

/* Allocate memory */

if (!(a = NAG_ALLOC(n * n, double))
h = NAG_ALLOC(n * n, double))
vl = NAG_ALLOC(n * n, double))
vr = NAG_ALLOC(n * n, double))
z = NAG_ALLOC(1 * 1, double)) |
w
w

=
|

= NAG_ALLOC(w_len, double)) |
= NAG_ALLOC(w_len, double)) |
ifaill = NAG_ALLOC(ifaill_len, Integer)) ||
ifailr = NAG_ALLOC(ifaill_len, Integer)) ||
select = NAG_ALLOC(select_len, Boolean)) ||
tau = NAG_ALLOC(tau_len, double)))

[
|

R
|

|
!
|
|
|
!
|
!
|
!

{
Vprintf ("Allocation failure\n");

exit_status = -1;
goto END;
}
/* Read A from data file x/
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= n; ++3)
Vscanf ("$1f", &A(i,3));
}
Vscanf (
Vscanf (

“\n] ", &thresh);

/* Reduce A to upper Hessenberg form */
f08nec(order, n, 1, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08nec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Copy A to H */
for (i = 1; 1 <= n; ++1)

[NP3645/7] f08nge.5

f08ngc NAG C Library Manual
for (3 = 1; j <— n, ++3)

/* Calculate the eigenvalues of H (same as A) */
fO08pec(order, Nag_EigVals, Nag NotZ, n, 1, n, h, pdh, wr,
wi, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08pec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print eigenvalues */
Vprintf (" Eigenvalues\n");
for (i = 0; 1 < n; ++1)
Vprintf (" (%8.4f,%8.4f)\n", wrl[il, wilil);
Vprintf ("\n")
for (i = 0; i < n; ++1)
select[1] = (wr[i] < thresh);
/* Calculate the eigenvectors of H (as specified by SELECT), */
/* storing the result in VR =%/
fO08pkc(order, Nag_RightSide, Nag_HSEQRSource, Nag_NoVec, select,
n, a, pda, wr, wi, vl, pdvl, vr, pdvr, n, &m, ifaill,
ifailr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08pkc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Calculate the eigenvectors of A = Q * VR */
f08ngc(order, Nag_LeftSide, Nag_NoTrans, n, m, 1, n, a, pda,
tau, vr, pdvr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ngc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print Eigenvectors */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m, vr, pdvr,
"Contents of array VR", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (a) NAG_FREE(a)
if (h) NAG_FREE (h)
if (vl) NAG_FREE(vl);
if (vr) NAG_FREE(vr) ;
if (z) NAG_FREE(z);
if (wi) NAG_FREE (wi) ;
if (wr) NAG_FREE (wr);
if (ifaill) NAG_FREE (ifaill);
if (ifailr) NAG_FREE (ifailr);
if (select) NAG_FREE(select);

if (tau) NAG_FREE(tau);
return exit_status;

f08nge.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

9.2 Program

Data

f08ngc Example Program Data

4

0.35 0.45
0.09 0.07
-0.44 -0.33
0.25 -0.32
0.0

9.3 Program

-0.14 -0.17

-0.54 0.35

-0.03 0.17

-0.13 0.11
Results

f08ngc Example Program Results

Eigenvalues
(0.7995,

(-0.0994,

(-0.0994, -
(-0.1007,

Contents of

1
0.3881
-0.7107
-0.3891
-0.3996

S w N R

0.0000)
0.4008)
0.4008)
0.0000)
array VR
2 3
0.0574 0.1493
0.0380 0.3956
0.0778 0.7075
-0.7270 0.8603

:Value of N

:End of matrix A
:Value of THRESH

f08ngc

[NP3645/7]

f08ngc.7 (last)

	f08ngc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	trans
	m
	n
	ilo
	ihi
	a
	pda
	tau
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_3
	NE_ENUM_INT_4
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

